
The Liner Shipping Berth Sheduling Problem with Transit Times

Abstrat

In this paper speed optimization problem of an existing liner shipping network is solved by adjusting the port

berth times. The objetive is to minimize fuel onsumption while retaining the ustomer transit times inluding the

transhipment times. To avoid too many hanges to the time table, hanges of port berth times are only aepted if

they lead to savings above a threshold value. Sine the fuel onsumption of a vessel is a non-linear onvex funtion of

the speed, it is approximated by a pieewise linear funtion. The developed model is solved using exat methods in less

than two minutes for large instanes. Computational experiments on real-size liner shipping networks are presented

showing that fuel savings in the magnitude of 2-10% an be obtained. The work has been arried out in ollaboration

with Maersk Line and the test instanes are on�rmed to be representative of real-life networks.

1. Introdution

Container shipping ompanies are urrently faing ombined hallenges of overapaity and volatile fuel pries. In

addition, rising onerns about greenhouse gas emissions has made it ruial for shipping ompanies to redue their

fuel onsumption. In the beginning of 2008, the future of maritime transportation looked remarkably bright. Major

ators of the setor responded to an ever-inreasing demand by extending the �eet apaity. At the end of 2008 orders

for new ships were equivalent to almost 80% of the urrent �eet apaity [20℄. However, when the eonomi risis hit

the liner shipping setor in 2009, a severe downturn in trade left the setor with overapaity. As a diret onsequene,

freight rates dropped 28% on average [11℄. As a response, shipping ompanies deployed less apaity on their networks

and by the end of 2009, 12% of the global ontainer �eet was laid up, ompared to 3% one year earlier [11℄.

Another response to the overapaity was slow steaming [5℄. Slow steaming is reduing the speed on a servie by

inreasing the overall servie time. The slow steaming strategy has been employed by most ontainer lines sine 2009.

While reduing bunker onsumption, slow steaming will by de�nition also extend the round-trip time of a servie.

Sine liner shipping ompanies generally provide weekly shipping servies, the number of vessels deployed on a servie

would then inrease with the duration of the round-trip. Beause of this, more vessels are needed to operate the same

tour and slow steaming an absorb some of the exess arrying apaity. This makes slow steaming the most relevant

option to hoose in order to redue operational ost while utilizing the available vessel apaity. However, while slow

steaming redues the bunker onsumption it may also extend the delivery times, resulting in unattrative servie times

for the ustomers. The delivery times an be de�ned as the duration for the transport of the demand from origin to

destination and is in the remainder of this paper referred to as transit time.

Aording to Stopford [19℄, the bunker ost is 35% to 50% of a vessel's ost and aording to [12℄ around 21% of

the ompany expenses. Hene, bunker onsumption is a ritial item for ahieving ost redution. The 2013 maritime

report of the United Nations [20℄ goes further by linking onsumption ost and environmental onerns. As a result a

better handling of fuel onsumption may redue both environmental impat and ost.

1.1. The Liner Shipping Berth Sheduling Problem with Transit Times

The slow steaming strategy exploits the relation between speed and bunker onsumption. However, lowering the

speed will obviously also result in longer transit times. Freight rates and transit times are ruial riteria for ustomers
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Figure 1: An example of a network ontaining three servies with possible transhipment loations at Hong Kong, Singapore and Colombo.

The network is similar to the one presented in [21℄.

when they hoose a arrier. Brouer et al. [3℄ list nine parameters for the servies that liner shipping ompanies an

o�er, mentioning that only freight rates and transit times are regarded as key fators. Consequently, the negative

impat of slow steaming on the transit time ould ause loss of ustomers. Therefore, lowering speed is a tradeo�

between bunker onsumption and ustomer satisfation.

The networks of most liner shipping ompanies are organized around servies that repeatedly serve a set of ports in

a prede�ned sequene. A set of homogeneous vessels are deployed on the servie to provide a periodi servie, usually

a weekly servie. A servie is de�ned by a port sequene, a timetable, a number of vessels deployed and a (weekly)

frequeny. In the example shown in Figure 1, port sequenes of three onstruted servies are depited. For larity,

the number of vessels and frequenies are omitted.

The implementation of slow steaming an be exeuted at two di�erent stages of the network design proess. It an

either be implemented when the servie is designed and then it will in�uene the port sequene and the number of

vessels deployed. Alternatively it an be implemented when the servie is already de�ned, so that only the shedule

is re-optimized to smooth out the speed along the di�erent parts of the servie.

Both approahes have their advantages and drawbaks. The �rst method implies solving a large integrated problem.

This may prove too omplex to be solved by urrent tehniques and implementing the solution may prove impossible for

strategi reasons. The seond method onsists of optimizing subproblems individually as this is easier for a ompany

to implement in their urrent network. This is, however, at the ost of possibly missing savings from a more holisti

approah.

In the variant studied here, only the the arrival times in the servied ports are resheduled. We will denote it the

The Liner Shipping Berth Sheduling Problem with Transit Times (LSBSPTT).
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Earlier we de�ned a servie as a port sequene, a timetable, a number of vessels deployed and a frequeny. In

the problem studied here the port sequene, the number of vessels deployed and the frequeny will remain the same

and only the timetable is hanged. The arrival times de�ne the shedule for eah servie of the network and they

are limited by the sailing speed. This is why these arrival times are the deisions variables of the LSBSPTT. The

slower a vessel sails the lower the bunker onsumption, and therefore the arrival time will be as late as possible when

minimizing bunker onsumption. The �eet size and the vessel mix, the round-trip time of servies, the port sequene

of servies and the frequeny of a servie are all �xed so that the only hange to be implemented is modi�ed times for

the port alls.

With the number of vessels �xed and a weekly frequeny of port visits, the overall duration of a round trip is

established. Weekly frequeny is the standard for most liner shipping operations. The duration of a round trip

(measured in weeks) is therefore equal to the number of vessels assigned to the servie. Sine we do not want to

hange the number of vessels of a servie, the overall round-trip time of a servie is respeted in the LSBSPTT.

In order to alulate transit times, all port visit times are alulated from a given time zero. The �rst port all on

a servie is de�ned as the starting port. In order to allow the model to also hange the port visit time of the starting

port, the hoie of starting port is a variable in the model.

At most ports in Europe, North Ameria and Asia a liner shipping ompany needs to book in advane a berthing

time for a port all with the port authorities. Changing a booked berthing time reates additional administrative work,

and the port authorities may not always be able to aommodate the requested hange. Therefore it is important that

berth times are only hanged if they ontribute to signi�ant savings. Hene, a penalty is introdued for resheduling

a port visit. This penalty is independent of how muh the time is hanged, sine the administrative expenses are

onsidered to be the same.

Liner shipping o�er the transportation of ustomer argo from a port of origin O to a port of destination D. A

path linking O and D is alled a routing. Linking two ports an be done by a diret routing where the vessel leaving

port O is the same as the one reahing port D. It an also be ompleted by using transhipment routing where the

argo is transhipped from one vessel to another vessel at a port di�erent from O and D. A transhipment routing an

easily inlude several of these transhipment operations. Transhipments generally add �exibility to a liner shipping

network and ensure good apaity use.

There may exist several di�erent routings for a single demand (from its origin to its destination), as one routing

may not have enough apaity for all the argo. Finding the heapest and/or fastest routings satisfying the vessel

apaities is a variant of the multi ommodity �ow problem. In the ase of the LSBSPTT, the routing problem has

already been solved beforehand. With the argo routing already de�ned, eah of the routes have already been seleted

and now the di�ulty is to ensure satisfation of the time restrition on argo for reahing their destination. As

mentioned earlier the ustomers are mainly interested in the prie and the duration of the transport. The transit

time of a ontainer routing inludes both the time spent on a vessel and time spent waiting at a port for a vessel

during a transhipment. This waiting time is here referred to as the transhipment time. The transit time is a �xed

parameter for eah origin destination pair and is important for staying ompetitive on the market, hene, respeting

it is a onstraint in the LSBSPTT.

The model should make sure that all transit times for the argo are retained. If a ontainer is transhipped in a

port from a servie A to a servie B some minimum time between the berthing of the two vessels is needed. The

minimum time is alled the Conneting Time Window (CTW) and it is usually measured from the departure of vessel

A to the arrival of vessel B. Most ports operate with a CTW of eight hours, but the model allows individual settings

for eah port. If the time between vessels A and B is below the CTW, or vessel A departs after the arrival of vessel

B the given ontainer has to wait for the next weekly arrival of vessel B.

In some spei� situations a hot berthing an take plae if the berth loations of the two vessels A and B are lose

to eah other. In this ase a ontainer is loaded diretly from vessel A to a truk that drives to vessel B. In this ase

less than eight hours are needed as CTW. The presented model supports any value of CTW and one an, if neessary,
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Figure 2: An example of a routing from Ningbo to Sydney on the network from Figure 1. The routing shown ontains a transshipment

operation in Singapore whih is desribed to the right.

keep some of the berthing times �xed to ensure that a spei� hot berthing will be possible.

As mentioned earlier, the �eet size, vessel mix, round-trip time of servies, port sequene of servies and the

frequeny of a servie are all �xed parameters for the LSBSPTT.

To summarize, the onsidered problem aims at minimizing the fuel onsumption of a liner shipping network by

resheduling port all times while retaining the sequene of port alls and retaining ustomer transit times. To the

best of our knowledge, this problem has not been onsidered before in the literature. Slow steaming, as implemented

by most liner shipping ompanies, has a fast headhaul trip and a slower bakhaul trip. The here proposed solution

tries to smoothen the speed in the whole round trip within the limits given by ustomer transit times. The proposed

solutions are easy to implement for a liner shipping ompany, sine no hanges to the logi of the network are made.

The remaining part of this paper is strutured as follows: A thorough literature review is presented in Setion 2.

The review fouses on researh sharing properties with the LSBSPTT. In Setion 3 the onstraints and variables of the

problem are desribed together with a detailed desription on the methodology used to handle the non-linearity of the

problem. In setion 4 the entire Mixed Integer Programming model (MIP) is presented. In Setion 5 the di�erent test

instanes are desribed whih is followed by omputational results in Setion 6. Finally, in Setion 7, the observations

are disussed, and future improvements are onsidered.
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2. Literature review

Until the new millennium, liner shipping transportation was sarely studied in the area of operations researh

(see [7℄), as opposed to truk transportation, airline transportation and train transportation.

Literature linked to maritime optimization problems and liner shipping network design is reviewed in [6℄, [7℄, [8℄,

[18℄ and [24℄. Brouer et al. [3℄ presented in 2014 a benhmark suite to help the researh development providing a good

overview of the onepts of liner shipping and how the liner shipping network is strutured.

Bunker ost aounts for a large share of the total liner shipping ost: 35-50% ([15℄, [18℄ and [19℄); hene, reduing

bunker onsumption an result in a onsiderable redution in the ost. Plum et al. in [16℄ give an introdution to

optimization tehniques for modelling bunker purhasing and how this may lower the bunker ost for a liner servie.

Stopford [19℄ explains that solving sheduling problems an bring what is alled eonomis of speed through a

derease in bunker onsumption. Cariou in [5℄ assesses the environmental impat of slow steaming and onlude that

it is also a mean to redue the arbon footprint of the liner shipping ompanies; thus adding an environmental inentive

on top of the eonomi inentive. This means that the ompanies an derease their ost and at the same time redue

their arbon emission resulting in a win-win situation.

When proeeding to slow steaming optimization, it is important to know how the onsumption grows as a funtion

of speed. There has been di�erent suggestions for how to alulate onsumption from the speed. Brown et al. [4℄ in

Referene Considers: Consumption Problem Solution Instane

Transhipment Round trip Transit time funtion type method size

Brown et al. No No No Super linear Tramp Column Small.: 12 ports

1987 [4℄ funtion shipping generation and 50 argos

Fagerholt et al. No Time No Quadrati Tramp Shortest path Small: 16 ports

2010 [9℄ windows funtion shipping problem and no argo

Norstad et al. No Time No Quadrati Tramp Heuristi Medium: 40 ports

2011 [14℄ windows funtion shipping method and 70 argos

Meng and Wang No Yes Yes Cubi Liner, Only Outer Small: 12 ports,

2011 [13℄ funtion long haul approximation and 1 servie

for non linearity

Reinhardt and Pisinger No Yes No Fixed Liner, Network Cutting Small: 15 ports

2011 [17℄ Speed Design Plane

Wang and Meng Yes Yes No Unique Liner, Cargo routing Outer Medium: 46 ports,

2012 [22℄ law per leg inluded to approximation 11 servies

minimize for non linearity

transit time

Wang and Meng Yes Fixed Yes Cubi Liner, Probabilisti Cutting plane Medium: 46 ports,

2012 [21℄ start time funtion version of based method 11 servies

speed with pieewise linear and 100 demands

�eet deployment

Wang et al. No Yes Yes Unique Liner, Speed, Dynami Small: 7 ports,

2013 [23℄ law per leg �eet deployment Programming 1 servie

and other methods

Karsten et al. Yes Yes Yes Not Liner, Flow Column Large: 111 ports

2013 [10℄ inluded generation 4000 demands

This paper Yes Yes Yes Cubi Liner, Speed, branh and bound Large: 226 ports,

funtion Resheduling Linearization of 300+ servies,

penalized ubi funtion 10000+ demands
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1987 suggested the super linear funtion based on generated shedules, while Notteboom [15℄ in 2009 suggested an

empirial onsumption funtion extrapolated from published data. Nevertheless, engine theory and empirial data are

most ommonly linking sailing speed and bunker onsumption through a ubi funtion approximation (Alderton [2℄

and Stopford [19℄). In an empirial study Wang and Meng [22℄ on�rm that the ubi funtion is a good approximation

for the onversion from the speed to the onsumption. Clearly the ubi funtion is nonlinear whih an ompliate

linear models and therefore speed optimization is often not onsidered when optimizing networks ([1℄, [3℄ and [17℄).

In Table 2 we give an overview of literature in maritime shipping whih onsiders the bunker onsumption in

their ost optimization. The �rst olumn lists in hronologial order artiles onsidering bunker onsumption. The

transhipment olumn states whether transhipment operations are allowed. The round trip olumn indiates if limits

on the total round trip time of servies is onsidered in the model. The transit time olumn shows whether there is a

time restrition on the journey of the ontainer from origin to destination. In the �fth olumn the onsumption law

used is provided. The sixth olumn gives an indiation of the problem solved. All the models onsidered exept for

[21℄ and this paper do not onsider the time waiting at port during a transhipment.

From Table 2 it an be observed that most of the solution methods have only been tried on small or medium

instanes. This implies that none of the ited works had to fae large-sale problems, in the magnitude of the

problems world leading liner shipping ompanies must deal with.

Wang and Meng [21℄ formulate a time sheduling problem using a probabilisti interpretation of the arrival time,

whih result in a probabilisti version of the model. In [21℄ the existing berth times are not onsidered. This would

be appliable if the ompany is generating ompletely new servies with no previous alls to the ports on the servie.

In [21℄ it is not possible to hange the temporal starting point for the servies and it introdues its pieewise linear

funtion by applying a utting plane algorithm to solve a medium sized instane with 100 demands. Keeping a �xed

temporal starting point restrits the possibilities for hanging the time for the port visit during the �rst and last week

and therefore the model may not always provide the minimal solution in ases where there is less than a week of travel

time between the last and the �rst port.

In this paper we present a new version of the speed optimization problem where existing port reservations are

resheduled. This is an inremental result expanding the previous work presented by Wang and Meng [21℄ and on

larger problem instanes. In the problem presented in this paper hanging berth time reservations is penalized to ensure

that hanges do not our without ensuring a signi�ant redution in bunker onsumption. Sine we an ompare

to the existing shedule we will be able to show the redution in bunker onsumption ahieved by the resheduling.

The problem model also allows for loking the berth time on some of the ports on one or more servies. The required

onnetion time needed for transhipment between servies an be hanged depending on the servies involved in the

transhipment. We present a model for this new problem of resheduling existing port visits to minimize bunker

onsumption under a resheduling penalty. This model also inludes a variable starting point for the servie to ensure

that ases where there an be less than a week between two port visits are solved to optimality. The problem is solved

for very large instanes by using the fat that the ubi funtion is onvex and therefore we an represent it by a series

of linear onstraints. However, we do not route the ontainers. In real life �nding the optimal �ow on a network is

ompliated due to various rules suh as abotage, santions and others. The ompanies generate an optimal default

�ow set on a network when the network is altered. Changes in routing of demands are often only arried out for a few

demands as the hanges may reate implementation haos in the operation with ontainers ending up on the wrong

vessels or santions and abotage rules may be violated. Thus we use the routes already implemented. The solution

found by our algorithm is as a result easier for the ompany to implement as it only involves hanging port visit times.

By using an network resembling a real-life network we an get a somewhat realisti estimate for the amount of

redution in bunker onsumption that an be ahieved by a ompany by simply hanging the time of the port alls. As

we shall see later the number of routes with onstrained transit times and ontaining transhipment is what inreases

the omplexity of the problem.
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3. Mathematial Problem formulation

In this setion the LSBSPTT is formulated more formally. The objetive funtion and the various onstraints will

be desribed in mathematial terms. Notation will be introdued when needed, but Table 1 gives an overview of all

variables and parameters used in the model.

Let R be the set of all servies, eah servie having a duration whih is a multiple of a week. Let Sr be the number

of weeks representing the duration of a servie r ∈ R. Let Lr be the ordered set of legs on servie r ∈ R where we

use the terminology (l′, l) ∈ Lr to indiate that leg l′ is followed by leg l in the port visit sequene. Note that the

leg sequene is yli so that the last leg in Lr is followed by the �rst leg. Then, let tdl be a ontinuous nonnegative

variable stating the departure time from the end port of leg l ∈ Lr, and let tal be a ontinuous nonnegative variable

stating the arrival time at the end port of leg l ∈ Lr. The domain for tdl and tal is [0, 168Sr[ where 168 is the number

of hours in a week. The time unit used for all parameters and variables in the model is hour.

3.1. Objetive minimizing bunker ost

The overall aim of the model is to minimize the bunker onsumption using penalties to restrit the modi�ed port

visit times to those generating signi�ant savings. Using the urrently reserved port visit time is preferable sine the

time slot is available in the port, and ustomers are used to this time. We will therefore not hange the port visit time

unless the savings are somewhat signi�ant. Therefore we introdue a penalty for eah hanged port visit time.

3.2. Sheduling port visits

All servies use the same global time (Greenwih Mean Time) starting from Sunday at 24:00. As seen in Figure 1

all servies are yli. Every servie will have exatly one �rst port visit on the route, de�ned as the �rst port alled

after time zero. A binary variable fl is used to indiate if leg l ends at the �rst port visit of servie r. Ensuring that

exatly one start leg is seleted is modeled by the following onstraint:

∑

l∈Lr

fl = 1, r ∈ R (1)

The time used on a leg l is the time the vessel departs from the end port of leg l, tdl , minus the time the vessel depart

from the end port on the previous leg tdl′ where (l
′, l) ∈ Lr. When l is the �rst leg on the servie we must furthermore

add the servie time 168 · Sr to get the time used.

3.2.1. Portstay and pilottime

The time used on a leg l ∈ L, whih an also be desribed as the time between tdl′ and tdl , where (l′, l) ∈ Lr, an

be separated into di�erent tasks. Suh tasks are here listed in the order they our between time tdl′ and tdl :

Pilot out This is the pilot time used on leaving the start port of the leg.

Oean sailing time This is the time the vessel sails without a pilot. The speed during this segment is determined

by the liner operators and is the only time whih is adjustable.

Pilot in This is the pilot time used on entering the end port of the leg.

Portstay This is the time the vessel spends at berth in the port to unload and load ontainers, load bunker and other

servie tasks. For a leg l the portstay at the end port is inluded in the departure time tdl of leg l ∈ L. The

portstay at the destination port of leg l is denoted as H
stay
l
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Figure 3: A graphi representation of the di�erent parts of a leg. The top diagram shows the ase where there is some distane on the leg

that is not part of the piloting. The diagram below shows the ase where the leg distane is equal to the pilot out and pilot in required on

the leg.

Let the time on a leg used on piloting (both out and in) be denoted P
pilot
l . When piloting a �xed speed is used and

therefore every leg l has an assoiated distane Dl, exluding the piloting, where speed optimization an take plae.

For ports loated very lose to eah other Dl may be zero, leaving the leg with no room for speed optimization. For

a graphi illustration of the piloting on legs see Figure 3.

Let the variable τl be the time used on sailing the distane Dl on leg l. The variable τl an then be de�ned as:

τl = tdl − tdl′ −H
stay
l − P

pilot
l + 168Srfl, (l′, l) ∈ Lr (2)

Note that by de�nition τl will always be positive. In fat τl will be greater than or equal to the time it takes to

sail the distane Dl at maximum speed. Clearly the speed used for sailing leg l ∈ L an be derived from the time τl
and distane Dl. In the model the speed is modeled using time and distane.

3.3. Maximum and minimum sailing speed

Let Tmin
l be the time needed for sailing the distane Dl at maximum speed and let Tmax

l be the time needed for

sailing Dl at the minimum sailing speed. Clearly, the time spent on sailing a leg l must be greater than or equal to

the time needed to sail the distane at maximum speed, so we have τl ≥ Tmin
l . The vessels also has a minimum speed

whih is required to be able to maneuver the vessel. This minimum speed is only used for alulating the bunker

onsumption. The minimum speed does not restrit the time spent on the leg whih an be muh larger allowing for

the ship to lay waiting for their berth time outside a port.

Let Cl(τl) be the ost of the bunker used when sailing the leg l using time τl. Then we have the onstraint that

Cl(τl) ≥ Cl(T
max
l ). In other words the minimum speed will provide a lower bound for the amount of bunker required

for sailing a leg. The di�erent ports have di�erent piloting distanes. The distanes depend on how aessible the port

is from the sea. However the pilot speed and time is assumed to always be the same and therefore it an be exluded

from the optimization.

3.4. Bunker onsumption

For the bunker onsumption we use the ubi funtion introdued by [3℄:

B(δ) =

(

δ

δv

)3

B(δv), (3)
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(a) (b)

Figure 4: Figure (a) shows the bunker onsumption on a leg as a funtion of time used on sailing the leg. Figure (b) The bunker onsumption

on a leg approximated by 15 seants, denoted S1-S15.

where δ is the speed used and δv is the design speed of vessel lass v. B(δv) is the bunker onsumption at the design

speed and B(δ) is the bunker onsumption at speed δ. The design speed δv and the bunker onsumption at design

speed B(δv) are part of the spei�ations of a vessel and therefore known for eah vessel and engine.

To alulate the bunker onsumption ost we will apply the bunker prie using the duration of the leg and the

given distane of the leg. The time used when sailing the leg l at design speed of vessel type v is denoted as τv. Thus

the speed an be found as δl =
Dl

τl
and δv = Dl

τv
where δl is the speed used on leg l. By using the onversion from

speed to time, equation (3) an be reformulated as:

Ĉl(τl) =

(

τv

τl

)3

B(δv)CT , (4)

where CT is the prie per metri tonne of bunker and Ĉl(τl) is the prie for bunker onsumed at every time unit

when using the time τl to sail the distane Dl on leg l. The time unit is hour when speed is nautial miles per hour.

Multiplying both sides of equation (4) with τl one �nds the bunker ost used on sailing Dl using time τl. Thus getting:

Cl(τl) =

(

τv

τl

)3

B(δv)CT τl. (5)

The funtion in equation (5) is illustrated in Figure 4 (a). To irumvent the nonlinearity of this funtion we

have hosen to make a pieewise linear representation. Sine the bunker ost funtion is onvex we an onstrut a

pieewise linear representation by using a set of linear onstraints. We have hosen to do this by a set of seants to the

funtion. These seants are evenly distributed along the urve as illustrated in Figure 4(b). The number of seants

used in the approximation is provided as input.

Let P be the set of seants used to approximate the bunker ost. The linear funtions of the seants must be

generated for eah leg to aount for the varying distane. For eah seant a linear funtion of Ĉl(τl) is de�ned as:

Ĉl(τl) = φ
p
l τl + ω

p
l , (6)
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where φ
p
l is the slope of the seant p ∈ Pl of the leg l and ω

p
l is the seants intersetion with the y axis. The onstraint

used for ensuring that the ost of sailing a leg l satis�es the seant approximation an then be formulated as:

Ĉl = φ
p
l τl + ω

p
l , p ∈ P, l ∈ L, (7)

where Ĉl is the ost of sailing leg l at time τl.

3.5. Demands and their transit time onstraints

Let Q be the set of demands whih are to be transported by the shipping ompany. Eah demand q ∈ Q ontains

an origin, destination, amount of ontainers, duration of transport and a prie. The ompany has a set of routes used

for shipping the demand. The reason for using the existing set of demand routes is that the ompany needs to know

that there is apaity for the amounts and that restritions suh as abotage and embargoes, port visit draft and so

forth are satis�ed as explained in the introdution.

When resheduling the port visits the transit time of a demand may hange. It is important that the ompany an

make sure that the transit time stays within their requirements so that ustomers are not lost. The transit time of a

demand q ∈ Q is denoted as TTq.

The transit time an be the time the ontainer is onboard the vessels, whih an be alulated from the time tdl of

the legs on the route. If the route ontains transhipments then the time the ontainer must wait at a terminal for the

next vessel must also be added to the transit time.

The servies have a weekly departure from eah port; therefore a ontainer will not wait in a port longer than a

week plus the time required for the onnetion between the vessels. The required minimal onnetion time however

an be from a few hours up to several weeks. Thus the time of week the port visit ours must be determined. To

alulate the time of week the port visit ours, an integer variable wl is used. The variable wd
l =

⌊

tdl
168

⌋

represents

the whole number of weeks ompleted at time tdl .

Let C be the set of onnetions c = (l, h) where l ∈ Lr ends at a port i and leg h ∈ Ls starts at port i and

servie r 6= s. Let Cq be the onnetions used by demand q ∈ D. Note that two di�erent demands q and q′ may have

onnetions in ommon. Let CTmin
c be the minimum required onnetion time for the onnetion c. Moreover, let

CTweeks
c be the number of weeks of CTmin

c so that CTweeks
c =

⌊

CTmin
c

168

⌋

.

Let the variable tal = tdl −H
stay
l be the arrival time at the end port of leg l. Then let wa

l be an integer variable so

that wa
l =

⌊

tal
168

⌋

represents the whole number of weeks ompleted at time tal .

The time the ontainer must wait in port at a onnetion going from a servie with leg l to another servie on leg

h an be expressed as two di�erent ases: The �rst ase is the ase where a demand using a onnetion where the

arrival time of the vessel on whih the ontainer must leave is later in the week than CTmin
c after the departure of the

vessel on whih the ontainer arrives. In this ase the waiting time an be expressed as:

tah − tdl − 168(wa
h − wd

l − CTweeks
c ) ≥ CTmin

c (8)

The seond ase is the ase where the onnetion is less than CTmin
c − CTweeks

c then the ontainer must wait

an additional week at port for the next arriving vessel. To model these two ases we inlude the variable xc whih

represents the number of weeks to be added when using onnetion c ∈ C.

Using this we formulate the onnetion requirements with the following onstraint:

tah − tdl − CTmin
c − 168(wa

h − wd
l − CTweeks

c − xc) ≥ 0, c = (l, h) ∈ C (9)
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The onstraints an now be used to formulate the transit time onstraints. As mentioned earlier the transit time

onsists of the time spend on the legs and the time spend in the terminal during a transhipment also alled the

onnetion time.

∑

c=(l,h)∈Cq

(tah − tdl − 168(wa
h − wd

l − xc + CTweeks
c )) +H

stay
h +

∑

l∈Lq

(tdl − tdl′ + 168Srfl)− Ĥstay
q ≤ TTq, q ∈ Q (10)

In this onstraint TTq is the transit time limit of demand q and the Ĥstay
q is the port stay at the destination port of

demand q. The set Lq ontains the legs on whih the argo is sailed. These onstraints are added to the model for all

demands transported on legs where speed may be hanged.

4. Complete Model

type notation desription

sets

R set of servies

L set of legs where l ∈ Lr is a leg on servie r ∈ R.

Q set of demands de�ned by a route (as set of legs l ∈ L) between to ports A to B

C set of onnetions between servie l ∈ L and l̂ ∈ L used by the demands in Q

Pl set of seants used for approximating the bunker urve on leg l ∈ L

parameters

P̂l penalty for shifting a berth time at leg l

Sr number of weeks used for the round trip of a servie

H
stay

l the portstay of leg l ∈ L

Ĥstay
q the portstay of the last leg of demand q ∈ Q

P
pilot
l time used for piloting on leg l ∈ L

Dl distane of leg l ∈ L

Tl urrent sheduled time for the berth visit

Tmin
l minimum time used for sailing leg l ∈ L (at maximum speed)

TTq transit time requirement of demand q ∈ Q

CTmin
c minimum time required time for onnetion c ∈ C

CTweeks
c equivalent to CTmin

c mod 168 for onnetion c ∈ C

φ
p

l gradient of seant p ∈ P of leg l ∈ L

ω
p

l y-axis intersetion of seant p ∈ P of leg l ∈ L

variables

fl (binary) indiates if leg l is a start leg of a servie

tdl (ontinuous) departure time of leg l ∈ L at its end port

tal (ontinuous) arrival time of leg l ∈ L at its end port

Cl (ontinuous) ost of of sailing leg l ∈ L

wd
l (integer) number of weeks from start of leg l ∈ L. This means that wd

l =
⌊

tdl
168

⌋

.

wa
l (integer) number of weeks from start of leg l ∈ L. This means that wa

l =
⌊

tal
168

⌋

.

ml (binary) is one if the port visit time has been hanged

xc (integer) indiates the number of weeks needed to make the onnetion

Table 1: Overview of notation used in the model

In the previous setion some of the di�erent omponents of the model were explained. In this setion we present

the omplete model. An overview of the notation an be seen in Table 1. Moreover we use the notation (l′, l) ∈ L to

indiate that l′ is the previous leg of l.
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min
∑

r∈R

∑

l∈Lr

Cl + P̂lml (11)

∑

l∈Lr

fl = 1, r ∈ R (12)

t
d
l − t

a
l = H

stay
l , l ∈ L (13)

t
a
l − t

d
l′ − P

pilot

l + 168Srfl ≥ T
min
l , r ∈ R, (l′, l) ∈ Lr (14)

Tl − (tdl − 168(wd
l ) + 168ml) ≥ 0, r ∈ R, l ∈ Lr (15)

t
d
l − 168wd

l − Tl + 168ml ≥ 0, r ∈ R, l ∈ Lr (16)

φ
p

l (t
a
l − t

d
l′ − P

pilot

l + 168Srfl) + ω
p

l ≤ Cl, r ∈ R, (l′, l) ∈ Lr, p ∈ Pl (17)

0 ≤ t
d
l − 168wd

l ≤ 168− ǫ, r ∈ R, l ∈ Lr (18)

0 ≤ t
a
l − 168wa

l ≤ 168− ǫ, r ∈ R, l ∈ Lr (19)

t
a
h − t

d
l − CT

min
c − 168(wa

h − w
d
l − CT

weeks
c − xc) ≥ 0, c = (l, h) ∈ C (20)

∑

c=(l,h)∈Cq

(tah − t
d
l − 168(wa

h − w
d
l − xc −CT

weeks
c ) +H

stay

h +
∑

(l,l′)∈Lq

(tdl − t
d
l′ + 168Srfl)− Ĥ

stay
q ≤ TTq, q ∈ Q (21)

wl ∈ {0, ..., Sr − 1}, r ∈ R, l ∈ Lr (22)

t
a
l , t

d
l ≥ 0, cl ≥ 0, r ∈ R, l ∈ Lr (23)

fl,ml ∈ {0, 1}, r ∈ R, l ∈ Lr (24)

xc ∈ {0, 1, 2}, c(l, l̂) ∈ C (25)

The objetive (11) minimizes the sum of bunker ost and penalties for moving port all times. The parameter P̂

is the penalty for moving the port all time at the end of leg l ∈ L, and the binary variable ml is one i� the port all

time has been moved. The variable Cl is the bunker ost on leg l.

The �rst onstraints in the model (12) ensure that exatly one leg is hosen as the �rst for eah servie. The arrival

time of leg l is de�ned in equation (13) Constraints (14) ensure that the legs are not traversed at a faster speed than

the maximum speed of the vessel. Constraints (15) and (16) ensure that a penalty is applied if port time is hanged

from the original sheduled (weekly) port visit time Tl for leg l ∈ L. For every leg the onsumption is restrited by

a set of linear funtions represented by onstraints (17). In onstraints (17) the variable φ
p
l is the slope of seant

pl on leg l ∈ L and ω
p
l is the intersetion of the seant. Constraints (18) and (19) de�ne the value of wd

l and wa
l

respetively. Constraints (20) ensure that the ontainer waits at the terminal for the next vessel arriving after the

minimum required onnetion time CTmin
c . The transit time is ensured to be below the requirement TTq for demand

q ∈ Q with onstraint (21). Constraints (22) to (25) de�ne the variable domains. The variables (23) are ontinuous

variables indiating the time and ost.

5. Test data

To test the algorithm a network ontaining 308 servies is used. The servies are servies existing in the world

operation today.The servies in the network have a weekly frequeny and port visit times are applied to all ports.

These port visit times are taken from existing servies published on the Internet by the various ompanies.The demands

are onstruted with help from a liner shipping ompany. For large liner shipping ompanies the number of distint
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demands is around 20,000. Note that eah demand is de�ned by an origin, destination and path. This path is unique

for eah demand. Therefore several demands with the same origin and destination may exist.

network properties

servies 308

legs 2091

demands 20863

onnetions 4722

total routes 20863

Table 2: Various properties of the onstruted network

instane servies port visits demands onnetions legs

Single-servie 1 21 1403 273 21

Two-servies 2 38 2459 482 38

11-servies 11 237 8435 1745 237

Cluster-1 28 137 3130 418 151

Cluster-2 29 72 4038 388 97

One-operator 84 1062 20863 4576 1062

Whole-network 308 2091 20863 4722 2091

Table 3: Various properties of the onsidered instanes

The same network is basis for all tests. The harateristis of the network are listed in Table 2. Based on this

network we have reated a number of test instanes. These test instanes are reated by seleting some subset of the

ports alled and allowing the visits to be resheduled. In the instane named Single-servie we open all port visits on

a single servie, whih onsists of 21 port visits and 273 demands uses this servie as part of their journey from origin

to destination. In the Two-servies instane all port visits on two servies are opened. The two servies ontain the

single servie used in the Single-servie instane. The two servies hosen all some of the same ports and there exists

demand whih tranships between the two servies. A larger instane named 11-servies ontains 11 servies, mainly

larger Asia Europe servies. The 11-servies instane is the size of a smaller liner shipping ompany operating 11

servies, 237 port visits and 8,435 demands. In the two Cluster instanes we have seleted a set of ports in the same

region suh as the Balti Sea or the Arabian Gulf and opened visits to these ports on many di�erent servies. In this

ase some but not all of the port visits on eah servie is opened. The open demand is the demand whih goes through

one of these opened port visits. The ase One-operator ontains 84 servies and orresponds to a network operated by

a major liner shipping ompany. For the instane Whole-network we have opened all port visits and all the servies

on the network an now be hanged. Note that the number of demands is the same for the two ases One-operator

and Whole-network.

We investigate the savings in fuel onsumption as a funtion of the transit time limit. Three di�erent ases are

onstruted: In the �rst ase all transit times for ustomers have to be the same as in the urrent shedule. In the

seond ase, 48 hours has been added to the limit on transit times. This means that many goods are delivered up to

two days later than originally planned, whih may be aeptable for many ustomers. Finally, the third ase allows

all urrent ustomer transit times to be violated. Sine the overall duration of round trip is retained, ontainer transit

times will still be reasonable.
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We have assumed that the bunker prie is $600 per ton and have a penalty for hanging a port visit time to $1000

(per week) resulting in a penalty of $52000 per year. The penalty for hanging a port visit was settled in ollaboration

with the liner shipping ompany but an be adjusted for eah port if desired.

6. Results

The test ases presented in Table 3 have been solved using CPLEX 12.5 on a Linux omputer with a 64 bit Intel

Xeon 2.67 GHz CPU. The results from the tests are shown in Table 4. The instane name is provided in the �rst

olumn. The seond olumn shows the number of hours by whih the transit times are allowed to hange with respet

to the urrent transit time. We test transit time limits as given by the urrent network, as well as limits extended

with 48 hours and unlimited transit times. An extended time limit of 48 hours orresonds to at most 1�2 days longer

transportation times whih often will be aepted by ustomers. Unlimited transit times are used to illustrate the

potential savings of negleting time limits. Notie that sine the overall duration of a round trip is onstant, transit

times still will not grow muh sine a slower speed on one leg means that another leg needs to be traversed at a higher

speed.

Note that it is possible to set individual transit time requirements on eah demand depending on their priority.

However here it is hosen to set them to the same extended time for easy visual validation of the results and due to

lak of data involving demand priorities. Sine the urrent port visit times is a solution to the problem where no port

visit has been hanged we provided this solution to the solver for warm starting.

Columns 3�6 in Table 4 reports the result of the tests. Column three shows how many port visit times have

hanged. Here it is important to remember that there is a signi�ant penalty introdued for hanging the port visit

time. The fourth olumn shows the redution in fuel onsumption ahieved from optimizing. This improvement is the

ost Cl on the legs l where the duration may be hanged due to open port visit time ompared to the ost of these

legs on the original network. The ost of the legs whih has not been seleted for optimization is disregarded as no

savings an our on them. The �fth olumn shows the running time in seonds and the last olumn shows the gap

between the lower bound and the best found feasible solution. Note that this gap also inludes the penalty osts.

The ases show promising savings and the running times for the two luster instanes, and the one and two string

instanes are less than two minutes with most of them around 1 to 5 seonds. The instane 11-servies does not reah

optimum in the 10 minutes provided. However it is very lose to optimum despite the fat that the instane is very

large with 237 open port visits and 8435 demands going through the open port alls.

If the original transit time limits are used, savings of up to 8% an be ahieved. With slightly extended transit

time limits of 48 hours, the savings are in the magnitude of 1-13% showing that major savings an be ahieved without

signi�antly hanging the servie level. If no transit time limits are present, the solutions an be slightly improved,

but generally the quality of solution is similar to the solutions found by extending the transit time limit by 48 hours.

The last ases ontaining the entire network of one major operator and the whole network of many operators are

not solved to optimality within the 10 minutes. However a whole network ontaining di�erent operators is not a

realisti ase and it is also unlikely that a major operator will try to reshedule the port visit on their entire network

at one.

Another interesting observation is that a substantial saving an be obtained by inreasing the transit time limit by

48 hours, but inrasing the transit times further does not signi�antly improve the savings. The saving ahieved on

the two luster instanes are very di�erent. This ould be due to a di�erene in how well the bunker onsumption has

been optimized in the manual original planning for eah of the lusters. However it ould also be due to the fat that

we only onsider standard bunker and do not onsider low sulphur bunker in the problem and the Balti is a region

where low sulphur bunker must be used.
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Instane added transit port alls ost time gap

times (hours) hanged redution (s)

Single-servie 0 5 1.12% 0 optimal

Single-servie 48 13 3.99% 1 optimal

Single-servie ∞ 13 4.54% 4 optimal

Two-servies 0 8 0.65% 0 optimal

Two-servies 48 24 4.62% 1 optimal

Two-servies ∞ 23 5.63% 63 optimal

11-servies 0 34 0.74% 6 optimal

11-servies 48 177 7.10% 600 0.08%

11-servies ∞ 190 8.98% 600 0.09%

Cluster-1 0 26 8.67% 0 optimal

Cluster-1 48 47 13.39% 3 optimal

Cluster-1 ∞ 38 13.48% 0 optimal

Cluster-2 0 0 0.00% 0 optimal

Cluster-2 48 21 1.77% 1 optimal

Cluster-2 ∞ 19 2.29% 0 optimal

One-operator 0 112 0.82% 175 optimal

One-operator 48 170 1.28% 600 6.29%

One-operator ∞ 589 7.93% 600 1.99%

Whole-network 0 250 1.90% 600 0.14%

Whole-network 48 245 6.90% 600 1.20%

Whole-network ∞ 790 9.16% 600 0.35%

Table 4: Test results with the di�erent instanes desribed in Table 3. The time limit is 10 minutes.

7. Conlusion

We have presented a model whih an �nd the optimal shedule for an existing network. The test results show

that it is possible to redue bunker onsumption signi�antly for real-life servies simply by resheduling the port visit

times while only introduing minor redutions in the servie level. A large liner shipping ompany suh as Maersk

Line transports nearly 9 million FFE (Forty Foot Equivalent Unit) per year, using around 1000 kg bunker (2013) per

FFE, so a redution of just a few perent will give substantial savings measured in absolute numbers.

The ases where all port visits on the entire network are allowed to be resheduled may provide savings of that

size. The interesting results from the tests is that signi�ant savings already appear when allowing the transit time

to inrease with two days (48 hours). In a ompetitive environment suh savings are important. We show that if only

parts of the network are resheduled the problem an be solved fast. However, if the whole network is resheduled

and limits are applied on all the transit times then the solver was not able to lose the gap to the lower bound but

signi�ant redutions in ost is still ahieved. Sine there are more than 20,000 demands in a real-life network and

eah transhipment in the presented model introdues new integer variables the demands are the primary ause for the

inreased running time.

Issues suh as Suez Canal meet up times an be handled by loking the port visit. However to be sure to ahieve an

optimal solution a future implementation would be to restrit the resheduling to ensure meet up times when dealing

with Canals. Another improvement for the model ould be the handling of Emission Control Areas where another

more expensive fuel type must be used. Inorporating this requires information of where the Emission Control Area
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is entered.

We have shown that the model an solve realisti problems of a reasonable size and ahieve good solutions to large

problems and improve the urrent solutions.
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