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The Liner Shipping Berth Scheduling Problem with Transit Times

Abstract

In this paper speed optimization problem of an existing liner shipping network is solved by adjusting the port
berth times. The objective is to minimize fuel consumption while retaining the customer transit times including the
transhipment times. To avoid too many changes to the time table, changes of port berth times are only accepted if
they lead to savings above a threshold value. Since the fuel consumption of a vessel is a non-linear convex function of
the speed, it is approximated by a piecewise linear function. The developed model is solved using exact methods in less
than two minutes for large instances. Computational experiments on real-size liner shipping networks are presented
showing that fuel savings in the magnitude of 2-10% can be obtained. The work has been carried out in collaboration
with Maersk Line and the test instances are confirmed to be representative of real-life networks.

1. Introduction

Container shipping companies are currently facing combined challenges of overcapacity and volatile fuel prices. In
addition, rising concerns about greenhouse gas emissions has made it crucial for shipping companies to reduce their
fuel consumption. In the beginning of 2008, the future of maritime transportation looked remarkably bright. Major
actors of the sector responded to an ever-increasing demand by extending the fleet capacity. At the end of 2008 orders
for new ships were equivalent to almost 80% of the current fleet capacity [20]. However, when the economic crisis hit
the liner shipping sector in 2009, a severe downturn in trade left the sector with overcapacity. As a direct consequence,
freight rates dropped 28% on average [11]. As a response, shipping companies deployed less capacity on their networks
and by the end of 2009, 12% of the global container fleet was laid up, compared to 3% one year earlier [11].

Another response to the overcapacity was slow steaming [5]. Slow steaming is reducing the speed on a service by
increasing the overall service time. The slow steaming strategy has been employed by most container lines since 2009.
While reducing bunker consumption, slow steaming will by definition also extend the round-trip time of a service.
Since liner shipping companies generally provide weekly shipping services, the number of vessels deployed on a service
would then increase with the duration of the round-trip. Because of this, more vessels are needed to operate the same
tour and slow steaming can absorb some of the excess carrying capacity. This makes slow steaming the most relevant
option to choose in order to reduce operational cost while utilizing the available vessel capacity. However, while slow
steaming reduces the bunker consumption it may also extend the delivery times, resulting in unattractive service times
for the customers. The delivery times can be defined as the duration for the transport of the demand from origin to
destination and is in the remainder of this paper referred to as transit time.

According to Stopford |19], the bunker cost is 35% to 50% of a vessel’s cost and according to |12] around 21% of
the company expenses. Hence, bunker consumption is a critical item for achieving cost reduction. The 2013 maritime
report of the United Nations [20] goes further by linking consumption cost and environmental concerns. As a result a
better handling of fuel consumption may reduce both environmental impact and cost.

1.1. The Liner Shipping Berth Scheduling Problem with Transit Times
The slow steaming strategy exploits the relation between speed and bunker consumption. However, lowering the
speed will obviously also result in longer transit times. Freight rates and transit times are crucial criteria for customers
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Figure 1: An example of a network containing three services with possible transhipment locations at Hong Kong, Singapore and Colombo.

The network is similar to the one presented in [21]].

when they choose a carrier. Brouer et al. B] list nine parameters for the services that liner shipping companies can
offer, mentioning that only freight rates and transit times are regarded as key factors. Consequently, the negative
impact of slow steaming on the transit time could cause loss of customers. Therefore, lowering speed is a tradeoff
between bunker consumption and customer satisfaction.

The networks of most liner shipping companies are organized around services that repeatedly serve a set of ports in
a predefined sequence. A set of homogeneous vessels are deployed on the service to provide a periodic service, usually
a weekly service. A service is defined by a port sequence, a timetable, a number of vessels deployed and a (weekly)
frequency. In the example shown in Figure [I port sequences of three constructed services are depicted. For clarity,
the number of vessels and frequencies are omitted.

The implementation of slow steaming can be executed at two different stages of the network design process. It can
either be implemented when the service is designed and then it will influence the port sequence and the number of
vessels deployed. Alternatively it can be implemented when the service is already defined, so that only the schedule
is re-optimized to smooth out the speed along the different parts of the service.

Both approaches have their advantages and drawbacks. The first method implies solving a large integrated problem.
This may prove too complex to be solved by current techniques and implementing the solution may prove impossible for
strategic reasons. The second method consists of optimizing subproblems individually as this is easier for a company
to implement in their current network. This is, however, at the cost of possibly missing savings from a more holistic

approach.
In the variant studied here, only the the arrival times in the serviced ports are rescheduled. We will denote it the

The Liner Shipping Berth Scheduling Problem with Transit Times (LSBSPTT).



Earlier we defined a service as a port sequence, a timetable, a number of vessels deployed and a frequency. In
the problem studied here the port sequence, the number of vessels deployed and the frequency will remain the same
and only the timetable is changed. The arrival times define the schedule for each service of the network and they
are limited by the sailing speed. This is why these arrival times are the decisions variables of the LSBSPTT. The
slower a vessel sails the lower the bunker consumption, and therefore the arrival time will be as late as possible when
minimizing bunker consumption. The fleet size and the vessel mix, the round-trip time of services, the port sequence
of services and the frequency of a service are all fixed so that the only change to be implemented is modified times for
the port calls.

With the number of vessels fixed and a weekly frequency of port visits, the overall duration of a round trip is
established. Weekly frequency is the standard for most liner shipping operations. The duration of a round trip
(measured in weeks) is therefore equal to the number of vessels assigned to the service. Since we do not want to
change the number of vessels of a service, the overall round-trip time of a service is respected in the LSBSPTT.

In order to calculate transit times, all port visit times are calculated from a given time zero. The first port call on
a service is defined as the starting port. In order to allow the model to also change the port visit time of the starting
port, the choice of starting port is a variable in the model.

At most ports in Europe, North America and Asia a liner shipping company needs to book in advance a berthing
time for a port call with the port authorities. Changing a booked berthing time creates additional administrative work,
and the port authorities may not always be able to accommodate the requested change. Therefore it is important that
berth times are only changed if they contribute to significant savings. Hence, a penalty is introduced for rescheduling
a port visit. This penalty is independent of how much the time is changed, since the administrative expenses are
considered to be the same.

Liner shipping offer the transportation of customer cargo from a port of origin O to a port of destination D. A
path linking O and D is called a routing. Linking two ports can be done by a direct routing where the vessel leaving
port O is the same as the one reaching port D. It can also be completed by using transhipment routing where the
cargo is transhipped from one vessel to another vessel at a port different from O and D. A transhipment routing can
easily include several of these transhipment operations. Transhipments generally add flexibility to a liner shipping
network and ensure good capacity use.

There may exist several different routings for a single demand (from its origin to its destination), as one routing
may not have enough capacity for all the cargo. Finding the cheapest and/or fastest routings satisfying the vessel
capacities is a variant of the multi commodity flow problem. In the case of the LSBSPTT, the routing problem has
already been solved beforehand. With the cargo routing already defined, each of the routes have already been selected
and now the difficulty is to ensure satisfaction of the time restriction on cargo for reaching their destination. As
mentioned earlier the customers are mainly interested in the price and the duration of the transport. The transit
time of a container routing includes both the time spent on a vessel and time spent waiting at a port for a vessel
during a transhipment. This waiting time is here referred to as the transhipment time. The transit time is a fixed
parameter for each origin destination pair and is important for staying competitive on the market, hence, respecting
it is a constraint in the LSBSPTT.

The model should make sure that all transit times for the cargo are retained. If a container is transhipped in a
port from a service A to a service B some minimum time between the berthing of the two vessels is needed. The
minimum time is called the Connecting Time Window (CTW) and it is usually measured from the departure of vessel
A to the arrival of vessel B. Most ports operate with a CTW of eight hours, but the model allows individual settings
for each port. If the time between vessels A and B is below the CTW, or vessel A departs after the arrival of vessel
B the given container has to wait for the next weekly arrival of vessel B.

In some specific situations a hot berthing can take place if the berth locations of the two vessels A and B are close
to each other. In this case a container is loaded directly from vessel A to a truck that drives to vessel B. In this case
less than eight hours are needed as CTW. The presented model supports any value of CTW and one can, if necessary,
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Figure 2: An example of a routing from Ningbo to Sydney on the network from Figure[[l The routing shown contains a transshipment
operation in Singapore which is described to the right.

keep some of the berthing times fixed to ensure that a specific hot berthing will be possible.

As mentioned earlier, the fleet size, vessel mix, round-trip time of services, port sequence of services and the
frequency of a service are all fixed parameters for the LSBSPTT.

To summarize, the considered problem aims at minimizing the fuel consumption of a liner shipping network by
rescheduling port call times while retaining the sequence of port calls and retaining customer transit times. To the
best of our knowledge, this problem has not been considered before in the literature. Slow steaming, as implemented
by most liner shipping companies, has a fast headhaul trip and a slower backhaul trip. The here proposed solution
tries to smoothen the speed in the whole round trip within the limits given by customer transit times. The proposed
solutions are easy to implement for a liner shipping company, since no changes to the logic of the network are made.

The remaining part of this paper is structured as follows: A thorough literature review is presented in Section [l
The review focuses on research sharing properties with the LSBSPTT. In Section [Blthe constraints and variables of the
problem are described together with a detailed description on the methodology used to handle the non-linearity of the
problem. In section [ the entire Mixed Integer Programming model (MIP) is presented. In Section [H the different test
instances are described which is followed by computational results in Section[6l Finally, in Section [, the observations
are discussed, and future improvements are considered.



2. Literature review

Until the new millennium, liner shipping transportation was scarcely studied in the area of operations research
(see [7]), as opposed to truck transportation, airline transportation and train transportation.

Literature linked to maritime optimization problems and liner shipping network design is reviewed in [6], 7], €],
|18] and [24]. Brouer et al. [3] presented in 2014 a benchmark suite to help the research development providing a good
overview of the concepts of liner shipping and how the liner shipping network is structured.

Bunker cost accounts for a large share of the total liner shipping cost: 35-50% ([15], [18] and [19]); hence, reducing
bunker consumption can result in a considerable reduction in the cost. Plum et al. in [16] give an introduction to
optimization techniques for modelling bunker purchasing and how this may lower the bunker cost for a liner service.

Stopford [19] explains that solving scheduling problems can bring what is called economics of speed through a
decrease in bunker consumption. Cariou in [5] assesses the environmental impact of slow steaming and conclude that
it is also a mean to reduce the carbon footprint of the liner shipping companies; thus adding an environmental incentive
on top of the economic incentive. This means that the companies can decrease their cost and at the same time reduce
their carbon emission resulting in a win-win situation.

When proceeding to slow steaming optimization, it is important to know how the consumption grows as a function
of speed. There has been different suggestions for how to calculate consumption from the speed. Brown et al. [4] in

Reference Considers: Consumption Problem Solution Instance
Transhipment | Round trip | Transit time function type method size
Brown et al. No No No Super linear Tramp Column Small.: 12 ports
1987 [4] function shipping generation and 50 cargos
Fagerholt et al. No Time No Quadratic Tramp Shortest path Small: 16 ports
2010 [9] windows function shipping problem and no cargo
Norstad et al. No Time No Quadratic Tramp Heuristic Medium: 40 ports
2011 [14] windows function shipping method and 70 cargos
Meng and Wang No Yes Yes Cubic Liner, Only Outer Small: 12 ports,
2011 [13] function long haul approximation and 1 service

for non linearity

Reinhardt and Pisinger No Yes No Fixed Liner, Network Cutting Small: 15 ports
2011 [17] Speed Design Plane
Wang and Meng Yes Yes No Unique Liner, Cargo routing Outer Medium: 46 ports,
2012 [22] law per leg included to approximation 11 services
minimize for non linearity

transit time

Wang and Meng Yes Fixed Yes Cubic Liner, Probabilistic Cutting plane Medium: 46 ports,
2012 [21] start time function version of based method 11 services
speed with piecewise linear and 100 demands

fleet deployment

Wang et al. No Yes Yes Unique Liner, Speed, Dynamic Small: 7 ports,
2013 [23] law per leg fleet deployment Programming 1 service
and other methods

Karsten et al. Yes Yes Yes Not Liner, Flow Column Large: 111 ports
2013 [10] included generation 4000 demands

This paper Yes Yes Yes Cubic Liner, Speed, branch and bound | Large: 226 ports,
function Rescheduling Linearization of 300+ services,

penalized cubic function 10000+ demands




1987 suggested the super linear function based on generated schedules, while Notteboom m] in 2009 suggested an
empirical consumption function extrapolated from published data. Nevertheless, engine theory and empirical data are
most commonly linking sailing speed and bunker consumption through a cubic function approximation (Alderton E]
and Stopford [19]). In an empirical study Wang and Meng @] confirm that the cubic function is a good approximation
for the conversion from the speed to the consumption. Clearly the cubic function is nonlinear which can complicate
linear models and therefore speed optimization is often not considered when optimizing networks ([1], [3] and [17]).

In Table [2] we give an overview of literature in maritime shipping which considers the bunker consumption in
their cost optimization. The first column lists in chronological order articles considering bunker consumption. The
transhipment column states whether transhipment operations are allowed. The round trip column indicates if limits
on the total round trip time of services is considered in the model. The transit time column shows whether there is a
time restriction on the journey of the container from origin to destination. In the fifth column the consumption law
used is provided. The sixth column gives an indication of the problem solved. All the models considered except for
M] and this paper do not consider the time waiting at port during a transhipment.

From Table Pl it can be observed that most of the solution methods have only been tried on small or medium
instances. This implies that none of the cited works had to face large-scale problems, in the magnitude of the
problems world leading liner shipping companies must deal with.

Wang and Meng [21] formulate a time scheduling problem using a probabilistic interpretation of the arrival time,
which result in a probabilistic version of the model. In M] the existing berth times are not considered. This would
be applicable if the company is generating completely new services with no previous calls to the ports on the service.
In it is not possible to change the temporal starting point for the services and it introduces its piecewise linear
function by applying a cutting plane algorithm to solve a medium sized instance with 100 demands. Keeping a fixed
temporal starting point restricts the possibilities for changing the time for the port visit during the first and last week
and therefore the model may not always provide the minimal solution in cases where there is less than a week of travel
time between the last and the first port.

In this paper we present a new version of the speed optimization problem where existing port reservations are
rescheduled. This is an incremental result expanding the previous work presented by Wang and Meng ] and on
larger problem instances. In the problem presented in this paper changing berth time reservations is penalized to ensure
that changes do not occur without ensuring a significant reduction in bunker consumption. Since we can compare
to the existing schedule we will be able to show the reduction in bunker consumption achieved by the rescheduling.
The problem model also allows for locking the berth time on some of the ports on one or more services. The required
connection time needed for transhipment between services can be changed depending on the services involved in the
transhipment. We present a model for this new problem of rescheduling existing port visits to minimize bunker
consumption under a rescheduling penalty. This model also includes a variable starting point for the service to ensure
that cases where there can be less than a week between two port visits are solved to optimality. The problem is solved
for very large instances by using the fact that the cubic function is convex and therefore we can represent it by a series
of linear constraints. However, we do not route the containers. In real life finding the optimal flow on a network is
complicated due to various rules such as cabotage, sanctions and others. The companies generate an optimal default
flow set on a network when the network is altered. Changes in routing of demands are often only carried out for a few
demands as the changes may create implementation chaos in the operation with containers ending up on the wrong
vessels or sanctions and cabotage rules may be violated. Thus we use the routes already implemented. The solution
found by our algorithm is as a result easier for the company to implement as it only involves changing port visit times.

By using an network resembling a real-life network we can get a somewhat realistic estimate for the amount of
reduction in bunker consumption that can be achieved by a company by simply changing the time of the port calls. As
we shall see later the number of routes with constrained transit times and containing transhipment is what increases
the complexity of the problem.



3. Mathematical Problem formulation

In this section the LSBSPTT is formulated more formally. The objective function and the various constraints will
be described in mathematical terms. Notation will be introduced when needed, but Table [ gives an overview of all
variables and parameters used in the model.

Let R be the set of all services, each service having a duration which is a multiple of a week. Let S, be the number
of weeks representing the duration of a service r € R. Let L, be the ordered set of legs on service r € R where we
use the terminology (I’,1) € L, to indicate that leg I’ is followed by leg [ in the port visit sequence. Note that the
leg sequence is cyclic so that the last leg in L, is followed by the first leg. Then, let ¢! be a continuous nonnegative
variable stating the departure time from the end port of leg I € L,, and let ¢} be a continuous nonnegative variable
stating the arrival time at the end port of leg [ € L,. The domain for ¢{ and ¢{ is [0, 1685, where 168 is the number
of hours in a week. The time unit used for all parameters and variables in the model is hour.

3.1. Objective minimizing bunker cost

The overall aim of the model is to minimize the bunker consumption using penalties to restrict the modified port
visit times to those generating significant savings. Using the currently reserved port visit time is preferable since the
time slot is available in the port, and customers are used to this time. We will therefore not change the port visit time
unless the savings are somewhat significant. Therefore we introduce a penalty for each changed port visit time.

3.2. Scheduling port visits

All services use the same global time (Greenwich Mean Time) starting from Sunday at 24:00. As seen in Figure [I]
all services are cyclic. Every service will have exactly one first port visit on the route, defined as the first port called
after time zero. A binary variable f; is used to indicate if leg [ ends at the first port visit of service r. Ensuring that
exactly one start leg is selected is modeled by the following constraint:

Y fi=1, r€R (1)

€L,

The time used on a leg [ is the time the vessel departs from the end port of leg [, tf, minus the time the vessel depart
from the end port on the previous leg & where (I’,1) € L,. When [ is the first leg on the service we must furthermore
add the service time 168 - .S, to get the time used.

3.2.1. Portstay and pilottime
The time used on a leg | € L, which can also be described as the time between tf, and t;i, where (I',1) € L., can
be separated into different tasks. Such tasks are here listed in the order they occur between time t;i, and tf :

Pilot out This is the pilot time used on leaving the start port of the leg.

Ocean sailing time This is the time the vessel sails without a pilot. The speed during this segment is determined
by the liner operators and is the only time which is adjustable.

Pilot in This is the pilot time used on entering the end port of the leg.

Portstay This is the time the vessel spends at berth in the port to unload and load containers, load bunker and other
service tasks. For a leg [ the portstay at the end port is included in the departure time tfl of leg [ € L. The
portstay at the destination port of leg [ is denoted as H;**
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Figure 3: A graphic representation of the different parts of a leg. The top diagram shows the case where there is some distance on the leg
that is not part of the piloting. The diagram below shows the case where the leg distance is equal to the pilot out and pilot in required on
the leg.

Let the time on a leg used on piloting (both out and in) be denoted P/ ot " When piloting a fixed speed is used and
therefore every leg [ has an associated distance D;, excluding the piloting, where speed optimization can take place.
For ports located very close to each other D; may be zero, leaving the leg with no room for speed optimization. For
a graphic illustration of the piloting on legs see Figure Bl

Let the variable 7; be the time used on sailing the distance D; on leg I. The variable 7; can then be defined as:

7 =t —tf — H' — prilet 11688, £, (I',1) € L, (2)

Note that by definition 7; will always be positive. In fact 7; will be greater than or equal to the time it takes to
sail the distance D; at maximum speed. Clearly the speed used for sailing leg [ € L can be derived from the time 7;
and distance D;. In the model the speed is modeled using time and distance.

3.83. Mazimum and minimum sailing speed

Let 7™ be the time needed for sailing the distance D; at maximum speed and let 77"** be the time needed for
sailing D; at the minimum sailing speed. Clearly, the time spent on sailing a leg [ must be greater than or equal to
the time needed to sail the distance at maximum speed, so we have 7; > Tlmm. The vessels also has a minimum speed
which is required to be able to maneuver the vessel. This minimum speed is only used for calculating the bunker
consumption. The minimum speed does not restrict the time spent on the leg which can be much larger allowing for
the ship to lay waiting for their berth time outside a port.

Let Cj(;) be the cost of the bunker used when sailing the leg ! using time 7;. Then we have the constraint that
Ci(m) > Ci(T;™**). In other words the minimum speed will provide a lower bound for the amount of bunker required
for sailing a leg. The different ports have different piloting distances. The distances depend on how accessible the port
is from the sea. However the pilot speed and time is assumed to always be the same and therefore it can be excluded
from the optimization.

3.4. Bunker consumption
For the bunker consumption we use the cubic function introduced by B]

)

B() = (a)gma@), 3)
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Figure 4: Figure (a) shows the bunker consumption on a leg as a function of time used on sailing the leg. Figure (b) The bunker consumption
on a leg approximated by 15 secants, denoted S1-S15.

where § is the speed used and §, is the design speed of vessel class v. B(d,) is the bunker consumption at the design
speed and B(J) is the bunker consumption at speed §. The design speed §, and the bunker consumption at design
speed B(d,) are part of the specifications of a vessel and therefore known for each vessel and engine.

To calculate the bunker consumption cost we will apply the bunker price using the duration of the leg and the
given distance of the leg. The time used when sailing the leg [ at design speed of vessel type v is denoted as 7,. Thus
the speed can be found as §; = [T’—ll and §, = % where §; is the speed used on leg [. By using the conversion from

speed to time, equation (B can be reformulated as:

Ci(n) = (2)33(%)0% (4)

Tl

where C7 is the price per metric tonne of bunker and ¢, (1) is the price for bunker consumed at every time unit
when using the time 7; to sail the distance D; on leg [. The time unit is hour when speed is nautical miles per hour.
Multiplying both sides of equation () with 7; one finds the bunker cost used on sailing D; using time 7;. Thus getting:

3
Cl(Tl) = (:—j) B((SE)CTTI. (5)
The function in equation (B) is illustrated in Figure @ (a). To circumvent the nonlinearity of this function we
have chosen to make a piecewise linear representation. Since the bunker cost function is convex we can construct a
piecewise linear representation by using a set of linear constraints. We have chosen to do this by a set of secants to the
function. These secants are evenly distributed along the curve as illustrated in Figure @(b). The number of secants
used in the approximation is provided as input.
Let P be the set of secants used to approximate the bunker cost. The linear functions of the secants must be
generated for each leg to account for the varying distance. For each secant a linear function of C; (1) is defined as:

Ci(n) = ¢fm + o, (6)



where ¢’ is the slope of the secant p € P, of the leg [ and w] is the secants intersection with the y axis. The constraint
used for ensuring that the cost of sailing a leg [ satisfies the secant approximation can then be formulated as:

C'l:qbfn—i-wf, pePlel, (7)
where C; is the cost of sailing leg [ at time 7;.

3.5. Demands and their transit time constraints

Let @ be the set of demands which are to be transported by the shipping company. Each demand ¢ € @ contains
an origin, destination, amount of containers, duration of transport and a price. The company has a set of routes used
for shipping the demand. The reason for using the existing set of demand routes is that the company needs to know
that there is capacity for the amounts and that restrictions such as cabotage and embargoes, port visit draft and so
forth are satisfied as explained in the introduction.

When rescheduling the port visits the transit time of a demand may change. It is important that the company can
make sure that the transit time stays within their requirements so that customers are not lost. The transit time of a
demand ¢ € @ is denoted as T7.

The transit time can be the time the container is onboard the vessels, which can be calculated from the time tfl of
the legs on the route. If the route contains transhipments then the time the container must wait at a terminal for the
next vessel must also be added to the transit time.

The services have a weekly departure from each port; therefore a container will not wait in a port longer than a
week plus the time required for the connection between the vessels. The required minimal connection time however
can be from a few hours up to several weeks. Thus the time of week the port visit occurs must be determined. To

d
calculate the time of week the port visit occurs, an integer variable w; is used. The variable wld = HTLSJ represents
the whole number of weeks completed at time tf.
Let C be the set of connections ¢ = (I, h) where | € L, ends at a port i and leg h € L, starts at port ¢ and

service r # s. Let C, be the connections used by demand g € D. Note that two different demands ¢ and ¢’ may have
connections in common. Let C'T)™" be the minimum required connection time for the connection c¢. Moreover, let

CTXe¢*s be the number of weeks of CT™™ so that CT ek = {CT:LMJ.

168
Let the variable tf = ¢! — H;** be the arrival time at the end port of leg I. Then let w{ be an integer variable so
that wj' = {%J represents the whole number of weeks completed at time ¢{.

The time the container must wait in port at a connection going from a service with leg [ to another service on leg
h can be expressed as two different cases: The first case is the case where a demand using a connection where the
arrival time of the vessel on which the container must leave is later in the week than CT"" after the departure of the
vessel on which the container arrives. In this case the waiting time can be expressed as:

¢ —td — 168(wf — wil — CTYeks) > oTmin (8)

The second case is the case where the connection is less than CT" — CT2°°k* then the container must wait
an additional week at port for the next arriving vessel. To model these two cases we include the variable z. which
represents the number of weeks to be added when using connection ¢ € C.

Using this we formulate the connection requirements with the following constraint:

t¢ —td — cT™" — 168wl — wil — OTY** —2.) >0, c¢=(,h)eC (9)

10



The constraints can now be used to formulate the transit time constraints. As mentioned earlier the transit time

consists of the time spend on the legs and the time spend in the terminal during a transhipment also called the
connection time.

>t —tf = 168(wf, — wi — we + CTRR)) + HY' Y + Y (1 — 1 + 168S,.f1) — H;'™ < TT,, q€Q (10)
c=(L,h)eC, leL,

In this constraint 77T, is the transit time limit of demand ¢ and the H 5“’9 is the port stay at the destination port of
demand g. The set L, contains the legs on which the cargo is sailed. These constraints are added to the model for all
demands transported on legs where speed may be changed.

4. Complete Model

type notation | description
R set of services
L set of legs where [ € L, is a leg on service r € R.
sets Q set of demands defined by a route (as set of legs [ € L) between to ports A to B
C set of connections between service | € L and [ € L used by the demands in Q
P, set of secants used for approximating the bunker curve on leg [ € L
Iz penalty for shifting a berth time at leg !
S, number of weeks used for the round trip of a service

Hlsmy the portstay of leg [ € L
a3ty the portstay of the last leg of demand g € Q
PPt Itime used for piloting on leg I € L

parameters D, distance of leg [ € L N
T current scheduled time for the berth visit
" minimum time used for sailing leg I € L (at maximum speed)
TT, transit time requirement of demand g € @

CT™" | minimum time required time for connection ¢ € C'
CTYee | equivalent to CT™™ mod 168 for connection ¢ € C
. gradient of secant p € P of legl € L

y-axis intersection of secant p € P of legl € L

11 (binary) indicates if leg [ is a start leg of a service

td (continuous) departure time of leg [ € L at its end port
tf (continuous) arrival time of leg [ € L at its end port

variables C (continuous) cost of of sailing leg | € L y
wi (integer) number of weeks from start of leg | € L. This means that wj' = | 115 |-
wy' (integer) number of weeks from start of leg | € L. This means that wi® = fT?s .
my (binary) is one if the port visit time has been changed
Te (integer) indicates the number of weeks needed to make the connection

Table 1: Overview of notation used in the model

In the previous section some of the different components of the model were explained. In this section we present
the complete model. An overview of the notation can be seen in Table Il Moreover we use the notation (I’,1) € L to
indicate that I’ is the previous leg of .
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min Z Z Cy + Py (11)

r€RIEL,

S =1, reR (12)
leL,
tf —t = H'Y, le L (13)
t —tf — PPt 11688, f; > T, reR, (I',1)€ L, (14)
Ty — (£ — 168(wj') + 168m;) > 0, r€R, 1€ L. (15)
t! — 168w]’ — Ty 4+ 168m; > 0, r€R, €L, (16)
P (L) — ty — PP 41688, fi) +wP < O, re€R, (I',l)EL,,pe P (17)
0 <t —168w]’ < 168 — ¢, reR, 1€ L, (18)
0 < tf — 168w < 168 — ¢, reR,leL, (19)
ty —tf — CT™™ —168(wf — wf — CT " —z.) > 0, c=(,h)€C (20)

> (th—tf = 168(wh; — wi —we — CT™) + HY'™Y + >~ (] — tih + 1685, fi) — Hy' "V < TT,, geQ (21)
e=(l,h)€Cy (LU)EL,
wy € {0,...,Sr — 1}, re R,1€ L, (22)
tf,tl >0, o >0, reRleL, (23)
fi,mi € {0,1}, reR/le L, (24)
z. € {0,1,2}, cl,lyeC (25)

The objective ([II) minimizes the sum of bunker cost and penalties for moving port call times. The parameter P
is the penalty for moving the port call time at the end of leg [ € L, and the binary variable m; is one iff the port call
time has been moved. The variable C; is the bunker cost on leg I.

The first constraints in the model (I2) ensure that exactly one leg is chosen as the first for each service. The arrival
time of leg [ is defined in equation (I3]) Constraints (I4)) ensure that the legs are not traversed at a faster speed than
the maximum speed of the vessel. Constraints (I&) and (8] ensure that a penalty is applied if port time is changed
from the original scheduled (weekly) port visit time T} for leg I € L. For every leg the consumption is restricted by
a set of linear functions represented by constraints (I7). In constraints (IT7) the variable ¢! is the slope of secant
pion leg | € L and w} is the intersection of the secant. Constraints (I8) and ([3) define the value of w{ and w}
respectively. Constraints ([20) ensure that the container waits at the terminal for the next vessel arriving after the
minimum required connection time CT". The transit time is ensured to be below the requirement 7T, for demand
q € Q with constraint ([2I). Constraints (22) to (23] define the variable domains. The variables (23) are continuous
variables indicating the time and cost.

5. Test data

To test the algorithm a network containing 308 services is used. The services are services existing in the world
operation today.The services in the network have a weekly frequency and port visit times are applied to all ports.
These port visit times are taken from existing services published on the Internet by the various companies.The demands
are constructed with help from a liner shipping company. For large liner shipping companies the number of distinct
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demands is around 20,000. Note that each demand is defined by an origin, destination and path. This path is unique
for each demand. Therefore several demands with the same origin and destination may exist.

network properties
services 308
legs 2091
demands 20863
connections 4722
total routes | 20863

Table 2: Various properties of the constructed network

instance services | port visits | demands | connections| legs
Single-service 1 21 1403 273 21
Two-services 2 38 2459 482 38
11-services 11 237 8435 1745| 237
Cluster-1 28 137 3130 418] 151
Cluster-2 29 72 4038 388 97
One-operator 84 1062 20863 4576|1062
Whole-network 308 2091 20863 4722|2091

Table 3: Various properties of the considered instances

The same network is basis for all tests. The characteristics of the network are listed in Table Based on this
network we have created a number of test instances. These test instances are created by selecting some subset of the
ports called and allowing the visits to be rescheduled. In the instance named Single-service we open all port visits on
a single service, which consists of 21 port visits and 273 demands uses this service as part of their journey from origin
to destination. In the Two-services instance all port visits on two services are opened. The two services contain the
single service used in the Single-service instance. The two services chosen call some of the same ports and there exists
demand which tranships between the two services. A larger instance named 11-services contains 11 services, mainly
larger Asia Europe services. The 11-services instance is the size of a smaller liner shipping company operating 11
services, 237 port visits and 8,435 demands. In the two Cluster instances we have selected a set of ports in the same
region such as the Baltic Sea or the Arabian Gulf and opened visits to these ports on many different services. In this
case some but not all of the port visits on each service is opened. The open demand is the demand which goes through
one of these opened port visits. The case One-operator contains 84 services and corresponds to a network operated by
a major liner shipping company. For the instance Whole-network we have opened all port visits and all the services
on the network can now be changed. Note that the number of demands is the same for the two cases One-operator
and Whole-network.

We investigate the savings in fuel consumption as a function of the transit time limit. Three different cases are
constructed: In the first case all transit times for customers have to be the same as in the current schedule. In the
second case, 48 hours has been added to the limit on transit times. This means that many goods are delivered up to
two days later than originally planned, which may be acceptable for many customers. Finally, the third case allows
all current customer transit times to be violated. Since the overall duration of round trip is retained, container transit
times will still be reasonable.
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We have assumed that the bunker price is $600 per ton and have a penalty for changing a port visit time to $1000
(per week) resulting in a penalty of $52000 per year. The penalty for changing a port visit was settled in collaboration
with the liner shipping company but can be adjusted for each port if desired.

6. Results

The test cases presented in Table Bl have been solved using CPLEX 12.5 on a Linux computer with a 64 bit Intel
Xeon 2.67 GHz CPU. The results from the tests are shown in Table @ The instance name is provided in the first
column. The second column shows the number of hours by which the transit times are allowed to change with respect
to the current transit time. We test transit time limits as given by the current network, as well as limits extended
with 48 hours and unlimited transit times. An extended time limit of 48 hours corresonds to at most 1-2 days longer
transportation times which often will be accepted by customers. Unlimited transit times are used to illustrate the
potential savings of neglecting time limits. Notice that since the overall duration of a round trip is constant, transit
times still will not grow much since a slower speed on one leg means that another leg needs to be traversed at a higher
speed.

Note that it is possible to set individual transit time requirements on each demand depending on their priority.
However here it is chosen to set them to the same extended time for easy visual validation of the results and due to
lack of data involving demand priorities. Since the current port visit times is a solution to the problem where no port
visit has been changed we provided this solution to the solver for warm starting.

Columns 3-6 in Table @ reports the result of the tests. Column three shows how many port visit times have
changed. Here it is important to remember that there is a significant penalty introduced for changing the port visit
time. The fourth column shows the reduction in fuel consumption achieved from optimizing. This improvement is the
cost C; on the legs | where the duration may be changed due to open port visit time compared to the cost of these
legs on the original network. The cost of the legs which has not been selected for optimization is disregarded as no
savings can occur on them. The fifth column shows the running time in seconds and the last column shows the gap
between the lower bound and the best found feasible solution. Note that this gap also includes the penalty costs.

The cases show promising savings and the running times for the two cluster instances, and the one and two string
instances are less than two minutes with most of them around 1 to 5 seconds. The instance 11-services does not reach
optimum in the 10 minutes provided. However it is very close to optimum despite the fact that the instance is very
large with 237 open port visits and 8435 demands going through the open port calls.

If the original transit time limits are used, savings of up to 8% can be achieved. With slightly extended transit
time limits of 48 hours, the savings are in the magnitude of 1-13% showing that major savings can be achieved without
significantly changing the service level. If no transit time limits are present, the solutions can be slightly improved,
but generally the quality of solution is similar to the solutions found by extending the transit time limit by 48 hours.

The last cases containing the entire network of one major operator and the whole network of many operators are
not solved to optimality within the 10 minutes. However a whole network containing different operators is not a
realistic case and it is also unlikely that a major operator will try to reschedule the port visit on their entire network
at once.

Another interesting observation is that a substantial saving can be obtained by increasing the transit time limit by
48 hours, but incrasing the transit times further does not significantly improve the savings. The saving achieved on
the two cluster instances are very different. This could be due to a difference in how well the bunker consumption has
been optimized in the manual original planning for each of the clusters. However it could also be due to the fact that
we only consider standard bunker and do not consider low sulphur bunker in the problem and the Baltic is a region
where low sulphur bunker must be used.
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Instance added transit | port calls cost |time| gap
times (hours)| changed |reduction| (s)

Single-service 0 5 1.12% 0|optimal
Single-service 48 13 3.99% 1| optimal
Single-service 00 13 4.54% 4| optimal
Two-services 0 8 0.65% 0|optimal
Two-services 48 24 4.62% 1| optimal
Two-services 00 23 5.63%| 63|optimal
11-services 0 34 0.74% 6 | optimal
11-services 48 177 7.10%| 600| 0.08%
11-services 00 190 8.98%| 600| 0.09%
Cluster-1 0 26 8.67% 0|optimal
Cluster-1 48 47| 13.39% 3 |optimal
Cluster-1 00 38| 13.48% 0|optimal
Cluster-2 0 0 0.00% 0| optimal
Cluster-2 48 21 1.77% 1| optimal
Cluster-2 00 19 2.29% 0|optimal
One-operator 0 112 0.82%| 175|optimal
One-operator 48 170 1.28%| 600| 6.29%
One-operator 00 589 7.93%| 600 1.99%
Whole-network 0 250 1.90%| 600| 0.14%
Whole-network 48 245 6.90%| 600| 1.20%
Whole-network 00 790 9.16%| 600| 0.35%

Table 4: Test results with the different instances described in Table Bl The time limit is 10 minutes.

7. Conclusion

We have presented a model which can find the optimal schedule for an existing network. The test results show
that it is possible to reduce bunker consumption significantly for real-life services simply by rescheduling the port visit
times while only introducing minor reductions in the service level. A large liner shipping company such as Maersk
Line transports nearly 9 million FFE (Forty Foot Equivalent Unit) per year, using around 1000 kg bunker (2013) per
FFE, so a reduction of just a few percent will give substantial savings measured in absolute numbers.

The cases where all port visits on the entire network are allowed to be rescheduled may provide savings of that
size. The interesting results from the tests is that significant savings already appear when allowing the transit time
to increase with two days (48 hours). In a competitive environment such savings are important. We show that if only
parts of the network are rescheduled the problem can be solved fast. However, if the whole network is rescheduled
and limits are applied on all the transit times then the solver was not able to close the gap to the lower bound but
significant reductions in cost is still achieved. Since there are more than 20,000 demands in a real-life network and
each transhipment in the presented model introduces new integer variables the demands are the primary cause for the
increased running time.

Issues such as Suez Canal meet up times can be handled by locking the port visit. However to be sure to achieve an
optimal solution a future implementation would be to restrict the rescheduling to ensure meet up times when dealing
with Canals. Another improvement for the model could be the handling of Emission Control Areas where another
more expensive fuel type must be used. Incorporating this requires information of where the Emission Control Area
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is entered.

We have shown that the model can solve realistic problems of a reasonable size and achieve good solutions to large

problems and improve the current solutions.
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